Simple, single-step, and scar-free mutagenesis of bacterial genes
نویسنده
چکیده
The need for generating precisely designed mutations is common in genetics, biochemistry, and molecular biology. Here, I describe a new λ Red recombineering method (Direct and Inverted Repeat stimulated excision; DIRex) for fast and easy generation of single point mutations, small insertions or replacements as well as deletions of any size, in bacterial genes. The method does not leave any resistance marker or scar sequence and requires only one transformation to generate a semi-stable intermediate insertion mutant. Spontaneous excision of the intermediate efficiently and accurately generates the final mutant. In addition, the intermediate is transferable between strains by generalized transductions, enabling transfer of the mutation into multiple strains without repeating the recombineering step. Existing methods that can be used to accomplish similar results are either (i) more complicated to design, (ii) more limited in what mutation types can be made, or (iii) require expression of extrinsic factors in addition to λ Red. I demonstrate the utility of the method by generating several deletions, small insertions/replacements, and single nucleotide exchanges in Escherichia coli and Salmonella enterica. Furthermore, the design parameters that influence the excision frequency and the success rate of generating desired point mutations have been examined to determine design guidelines for optimal efficiency.
منابع مشابه
Direct and Inverted Repeat stimulated excision (DIRex): Simple, single-step, and scar-free mutagenesis of bacterial genes
The need for generating precisely designed mutations is common in genetics, biochemistry, and molecular biology. Here, I describe a new λ Red recombineering method (Direct and Inverted Repeat stimulated excision; DIRex) for fast and easy generation of single point mutations, small insertions or replacements as well as deletions of any size, in bacterial genes. The method does not leave any resi...
متن کاملGeneration of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملFRUIT, a Scar-Free System for Targeted Chromosomal Mutagenesis, Epitope Tagging, and Promoter Replacement in Escherichia coli and Salmonella enterica
Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of "scar" DNA into the chromosome. Here, we describe a rapid, efficient, P...
متن کاملDuplication-Insertion Recombineering: a fast and scar-free method for efficient transfer of multiple mutations in bacteria
We have developed a new λ Red recombineering methodology for generating transient selection markers that can be used to transfer mutations between bacterial strains of both Escherichia coli and Salmonella enterica. The method is fast, simple and allows for the construction of strains with several mutations without any unwanted sequence changes (scar-free). The method uses λ Red recombineering t...
متن کاملHigh-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol.
The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study des...
متن کامل